The metal d-orbitals that are directly facing the ligands in K₃[Co(CN)₆] are (2019 Main, 12 Jan I)

(a) d_{xz} , d_{yz} and d_{z^2}

(b)
$$d_{2}$$
 and d_{3}

(c) d_{xy} , d_{xz} and d_{yz}

(b)
$$d_{x^2 - y^2}$$
 and d_{z^2}
(d) d_{xz} and $d_{x^2 - y^2}$

In K3 [Co(CN)6], Co have +3 oxidation state and electronic onfiguration of Co3+ is [Ar] 18 3d6.

$$Co^{3+} = 11111111$$
 $4s^0$ $4p^0$

As, CN is a strong field ligands so it pairs up the de's

n an octahedral complex, the metal is at the centre of the ctahedron and the ligands are at the six corners. The lobes of the g orbitals $(d_{x^2-y^2}$ and $d_{z^2})$ point along the axes x, y and z under he influence of an octahedral field, the d- orbitals split as follow.

As the *d*-orbitals, i.e. $d_{x^2-y^2}$ and d_{z^2} are vacant. Hence, these both orbitals are directly facing the ligands in K3 [Co(CN)6].